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Abstract-This paper deals with the extension of the classical Crotti's theorem to the theory of finite
elastic displacements. In its classical formulation Crotti's theorem is based on the complementary
work of deformation of the so-called internal forces and is restricted to Eulerian treatment of the
geometrically linearized theory of elasticity. In order to investigate the conditions for the extension
of Crotti's theorem to the theory of finite elastic displacements, a Lagrangian description of
deformation is assumed and the classical Green-Lagrange tensor is adopted as measure of strain.
The internal forces are expressed in terms ofthe Kirchhoff-Trefftz stress tensor, which is energetically
conjugate to the Green-Lagrange strain tensor. The expression corresponding to the complementary
work of applied forces in terms of internal stresses differs from the integral of the complementary
strain energy density by the addition of a term yielded by the product of displacement gradients
which, of course, vanishes in the geometrical linearized theory. The conditions required so that this
expression is a perfect differential and is therefore employable in the extension of Crotti's theorem
to the finite displacement theory of elasticity are then determined. Furthermore, by a general
technique of calculus of variations it is shown that the compatibility conditions of the problem are
implicitly embedded in this extended formulation of the theorem, as happens in the classical one.
Finally, an application to a very simple example in the theory of structures is discussed.

I. INTRODUCTION

Crotti's theorem (Crotti, 1878) is the second of the classical theorems of structural mech­
anics on the derivatives of deformation work, direct and complementary, ofelastic systems.

Cotterill-Castigliano's theorem (Cotterill, 1865; Castigliano, 1879) is the first of these
theorems and involves the direct work of deformation of internal forces, i.e. the work given
by the product of forces as intensive factors by displacements as extensive factors. It is
therefore based on the concept of internal elastic energy and it is expressed by the derivative
of a function of the displacement field only, which is implicitly a condition of equilibrium
of the problem. Cotterill-Castigliano's theorem is linked to the stationary value of the total
potential energy and is therefore valid in the geometrically linearized as well as in the finite
displacement theory of elasticity.

Crotti's theorem, on the contrary, involves the complementary work of deformation
of internal forces, i.e. the work given by the product of displacements as intensive factors
by forces as extensive factors.

Its classical expression is given by the formula

auc = dap
p

p

where the complementary internal energy Uc can be expressed in terms of the Eulerian
stress tensor Sand d p is the generalised displacement corresponding to the generalised force
pp.

In this form Crotti's theorem is linked to the theorem of virtual forces and results,
conversely to Cotterill-eastigliano's theorem, in a condition of compatibility (Dorn and
Schild, 1956). Its validity is however restricted to the geometrically linearized theory of
elasticity.

The difficulties in the extension of Crotti's theorem to the finite displacement theory of
elasticity arise from the fact that on account of the non-linearity of the problem it is
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not possible to formulate a complementary energy principle which yields the system of
compatibility equations by means of variation of the Eulerian stress field.

Recently the extension of Crotti's theorem to the geometrically non-linear theory of
elasticity has become once again subject for discussion among structural engineers on
account of a proposal formulated by EI Naschie et at. (EI Naschie, 1988; EI Naschie and
Al Athel, 1989; EI Naschie, 1990). This proposal is based on the application of the Eu1er­
Legendre transformation to the generalised applied force-displacement space according to
Engesser's definition of complementary energy (Engesser, 1889). However, it is clear that
this procedure cannot fulfil the real extension of the theorem to the finite displacement
theory ofelasticity because it is not able to yield the compatibility conditions of the problem
through the derivatives of a function involving the internal stress field.

The aim of the present paper is to re-state the problem in a general form and show how
it is possible to get such a result starting from the direct investigation of the correspondence
between the complementary work of applied forces and a term involving internal stresses
and strains. In order to do so it is necessary to make reference to a Lagrangian description
of transformation, and it appears opportune to make use of the Green-Lagrange strain
tensor and the Kirchhoff-Trefftz stress tensor, which are energetically conjugate.

The expression obtained is obviously different from the one holding in the geometrically
linearized theory on account of the non-linearity of the problem. The term corresponding
to the complementary work of external forces is not simply the Euler-Legendre trans­
formation of the direct work of the internal stress field. Nevertheless it is shown that this
term can be rearranged so that a perfect differential can be recognisable under certain
conditions. As one would have expected, these conditions are not entirely derivable from
thermodynamical statements.

On one hand it is thus possible to keep 'memory' of the transformation from initial to
final configurations but, on the other hand, the description of the stress field becomes
dependent on the state of deformation.

To clarify the compatibility conditions of the problem implicitly embedded in the
expression obtained, it is advantageous to make reference to the techniques developed for
multiple-field variational principles (Reissner, 1953; Baldacci, 1967; Fraeijs de Veubeke,
1972; Washizu, 1975; Oden and Reddy, 1983). Therefore we employ the Piola-Signorini
form of the equilibrium equations in the Lagrangian scheme to render explicit the condition
of compatibility contained in the expression developed here.

Finally, the result obtained in generality for a class of elastic bodies is applied to a very
simple example in the theory of structures. The example is the case of an elastically hinged
beam and we operate in the generalised internal force-displacement space.

2. LAGRANGIAN DESCRIPTION OF TRANSFORMAnON

Referring both the initial and the strained configuration of an elastic body to the same
Cartesian frame, let us indicate the coordinates of a material point as x in the initial
configuration and as y in the final configuration. The displacement field is given by

u(x) = y(x)-x. (2)

For the sake of clarity we will define gradients in x by V and gradients in y by V (cf.
Appendix for a brief account of the scheme of notation adopted). Moreover, y and u are
supposed to be class eN (N ~ 2) vector fields on the region Vooccupied by the body in the
initial configuration.

We also suppose that the change in configuration gives origin to an invertible trans­
formation, so that if the elements of the Jacobian matrix are

F = Vy

the elements of its inverse are, on the other hand,

(3)
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F- 1 = Vx.

The infinitesimal volume element d V in the strained configuration is given by

dV= JdVo

1913

(4)

(5)

where J is the determinant of the Jacobian matrix; in the nature of a physical assumption,
it can be supposed that J > 0 everywhere.

The following relationship holds between the oriented boundary surface elements in
the final and initial configuration:

(6)

o and 00 being the outward unit normals on the boundary of the region occupied by the
body, respectively, in the final and initial configuration.

In this framework we can assume as measure of strain in the region Vo the Green­
Lagrange strain tensor D :

(7)

In the following we will assume equations (7) to be on the whole a set of compatibility
equations. In fact if we assign an arbitrary tensor field D on Vo the non-linear set of
differential equations (7) in the unknown vector field u (or, what is equivalent, in y) does
not necessarily admit a solution. However, it can be demonstrated (Murnaghan, 1951;
Novozhilov, 1961) that if the components of the tensor field D satisfy some additional
conditions, called conditions ofcompatibility, the system ofdifferential equations (7) admits
a vector field solution u. Under certain circumstances the uniqueness is also assured.

The conditions of compatibility are equivalent to the vanishing of the Riemann­
Christoffel tensor based on D and can be derived from the same (7). In fact, from equations
(7) we can obtain a set of relationships between the sole components D ij of the tensor field
D by elimination of the components ui,ix) of the gradient Vu. These relationships are clearly
embedded in the equations (7) and in this sense the solvability of the system can be assumed
to be a set of compatibility conditions.

Finally, let us introduce the symmetrical Kirchhoff-Trefftz stress tensor T, related to
the Eulerian or Cauchy stress tensor S by

(8)

The Kirchhoff-Trefftz stress tensor can be associated with a definition of force per unit
initial area or volume in the metric induced by the deformation and it is related to the
surface traction vector field Co and to the body force vector field Pob, both evaluated on the
initial configuration, by the equilibrium equations in the Lagrangian or Piola-Signorini
form:

div(T+VuoT)+Pob = 0 in Vo

(T+VuoT)ooo = Co oniJV{

(9)

(10)

Po is the mass per unit volume in the initial configuration and b is the vector field of body
forces per unit mass. Both Sand T are supposed to be class eN (N ~ 2) tensor fields on
the region Vo.

3. COMPLEMENTARY WORK AND EXTENSION OF CROTTI'S THEOREM

It is common knowledge that in the geometrically linearized theory ofelasticity Crotti's
theorem can be derived straightforwardly from the relationship



1914 F. GUARRACINO

(11)

where P is the vector of generalised applied forces, A is the vector of the corresponding
generalised displacements and 2E = (V'u + V'u T

) is the infinitesimal strain tensor. As known,
in this framework all the vector and tensor fields are understood to be evaluated on the
unstrained configuration.

Of course, the existence of a one-to-one correspondence is required between the Sij
and the Eij so that, since the expression

deP (E) = S x dE

is, for hyperelastic bodies, a total differential, from the expression

deS x E) = S x dE+E x dS

we are led to the conclusion that

dePe(S) = E x dS

(12)

(13)

(14)

is also a total differential (Novozhilov, 1961).
We have therefore the following Euler-Legendre dual transformation (Hill, 1956)

and

S x E - eP(E) = ePe(S) (15)

(16)

This leads immediately to recognition of the right hand member of equation (11) as a
perfect differential, so that we can write

(17)

and consequently we have the classical expression (I) of Crotti's theorem, once provided
the relationship S = S(P).

Moreover, by commuting differentials into variations b, equation (11) can be identified
with the theorem of virtual forces,

(18)

and consequently Crotti's theorem constitutes a condition of compatibility (Dorn and
Schild, 1956).

It is worth observing that the compatibility equations are given by means of the
variation of the Eulerian stress field, which is independent of deformation. In fact in the
geometrically linearized elasticity theory the Eulerian stress field is always referred to the
initial configuration. Finally, there is complete correspondence between the complementary
work of applied forces and the complementary work of the internal stress field.

In order to pursue the extension of Crotti's theorem to the finite displacement theory
of elasticity it appears natural to assume as starting point the expression of the elementary
complementary work of applied forces in the strained configuration. Let us introduce the
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surface traction vector field f on av and the body force per unit mass vector field b on V,
both referred to the strained configuration. With reference to the complementary work We
of applied (orces, we can write

(19)

Let us then consider the Eulerian stress field dS in equilibrium with the forces p db and df
according to the Cauchy's equations

fudS+pdb = 0 in V

dSon = df on avf
(20)

(21)

where, of course, the divergence operator~ is defined on y. By means of equations (20)
and (21), formulae (A.6) in the Appendix and application of the divergence theorem, we
can express the elementary complementary work d We of applied forces in terms of the stress
field dS as

dWe= rpdbToudV+ r dfToudA = rdSxVudV.
Jv Jov Jv

(22)

Since in the finite displacement theory of elasticity we cannot assimilate the strained
configuration into the initial one, we now perform a change ofcoordinates from the Eulerian
system y to the Lagrangian one x.

First of all we can observe that equation (10) can be written in the following manner:

since relationship (2) implies

F = I+Vu.

On account of equations (21), (6), (8) and (23) we have therefore

(23)

(24)

dfdA = dSondA = JdSoF-TonodAo = FodTonodA o = dfodA o. (25)

Provided equation (5) and the principle of conservation of mass, that is

p(y) d V = Po(x) d Vo

the first part of equation (22) becomes

(26)

(27)

Let us now refer the displacement gradients Vu of the right hand side of equation (22) to
the coordinates x.

We can write

(28)

and making use of (24) once more,
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(29)

On account of equation (29), let us now write the internal product of the right hand side
of equation (22)

Making reference to formulae (A.3) in the Appendix and by definition (8) we get

Finally,-the symmetry of the Kirchhoff-Trefftz stress tensor dT leads to

So far the proposed change of coordinates in equation (22) is completed:

In this expression we can immediately note that the non-linearity of the problem is the
origin of the term 1dT x (Vu T

• Vu), and therefore there is not a direct correspondence
between the complementary work of applied forces and the complementary work of the
stress field, contrary to what happens in the geometrically linearized theory. This means
that the equivalence in energy of the work performed by applied and internal forces, which
relies on the principle of conservation of energy, is not followed by the equivalence of the
respective Euler-Legendre transformations. Nevertheless, let us point out the circumstances
under which the form in which we have arranged the internal stress member of equation
(33) can represent a perfect differential.

First of all it is clear that in this framework also we can suppose that the components
of the Lagrangian stress field T are single-valued functions of the components of the Green
strain tensor D satisfying

(34)

and we have everywhere in the hyperelastic body

(35)

Furthermore, if we suppose that the constitutive equations (35) establish a one-to-one
correspondence between the Tij and the Dij in this case we can also admit the existence of
the following Euler-Legendre dual transformation (Ogden, 1984)

T x D-<I>(D) = <l>c(T)

and the definition of complementary energy density <l>c(T) yields

~~c(l?2 = D
aT;j 'j'

(36)

(37)

However, given the invertibility of relationships (35) and the solvability of the equations
(7), as discussed in Section 2, we note that the last term ofequation (33) represents a perfect
differential only if
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dG = !dT x (VUT
0 VU)
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(38)

is also a perfect differential.
From a physical point of view, it is worth observing that this condition is due to the

fact that equation (33) keeps 'memory' of the actual transformation and this fact cannot
be yielded on the whole by the energy statement (37), contrary to what happens in the
geometrically linearized theory of elasticity. Moreover, in general it is a difficult matter to
determine the conditions for the integrability of expression (38) and it appears preferable
to investigate the distinctive features of the problem at hand. Nevertheless, when the case
is that (38) is a perfect differential, we can write

u: = r <l>e(T) +G(T) d VoJvo

(39)

and this yields the natural extension of Crotti's theorem to the finite displacements theory
of elasticity, provided we express the functional relationship (33) in terms of generalised
forces and displacements such that

and therefore

au*
ape = ~p.

p

(40)

(41)

It is straightforward to verify that equation (33) and, consequently, equations (40) and (41)
naturally reduce themselves to the expressions (18), (11) and (1) when we consider the
displacement gradients as negligible before unity (IVul « 1) and the stress field is evaluated
under the conditions x ~ y, as is usual in the geometrical linearized theory of elasticity.

4. EXTENDED CROTTrS THEOREM AS A COMPATIBILITY CONDITION

To complete our discourse it remains to show how the conditions of compatibility and
the boundary kinematic conditions in the finite displacement theory ofelasticity are embed­
ded in equation (33).

In order to do so we partly follow a classical variational procedure (Friedrichs, 1929),
which has been often employed to various degrees in the literature dealing with variational
principles for finite elastic displacements (Reissner, 1953; Baldacci, 1967; Fraeijs de
Veubeke, 1972; Washizu, 1975; Oden and Reddy, 1983).

Retracing the steps which led from (19) to (33), it is straightforward to verify that in
this case we can also formally commute differentials db, df and dT into variations t5b, M
and t5T. This means that, according to the same procedure, the following relationship:

holds true, provided the variation of the Lagrangian stress field t5T is related to the
variation of applied forces pt5b and M by means of the equations

div (t5T +Vu 0 t5T) + Pot5b = 0 in Vo

(t5T+Vu 0 t5T) 000 = Mo onaV~.

(43)

(44)

As a matter of fact equation (42) results to be equivalent to the stationary value of the
functional
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with respect to all the equilibrated variations of the static fields.
For the sake of generality we can also consider the following boundary kinematic

conditions imposed on the displacement field:

u = u onaV'O (46)

provided the boundary surface a Vois partitioned as follows: avo = a V'O u a V~. Forces per
unit surface are applied on av~.

Now we render explicit the compatibility conditions embedded in the variational
statement (42) by subtracting from the functional (45) the Piola-Signorini equilibrium
equations (9) and (10) through the Lagrangian multipliers fields hand k:

'¥* = r PobT'udV+ r f~'udAo- r [<I>c(T)+nx(VuT'Vu)]dVoJvo Jovo Jvo

- Lo [div (T + Vu 'T)+PobV' hdVo- iv~ [(T +Vu 'T)' Do-foV ·kdAo. (47)

The functional '¥* is now stationary with regard to variations of the static fields as well as
to variations of the Lagrangian multiplier field. It is worth noting that the M, the c5b and
the c5T no longer need to satisfy the set of equations (43) and (44) a priori.

At this point the natural conditions or Euler equations of the problem are yielded by
free variations of the static fields (Courant and Hilbert, 1953).

In fact we can derive from (47)

c5'¥* = iv~ M~' u dA o+ ivi, M~' kdA o- Lt{[(c5T + Vu' c5T)' DoV' k-M~' u} dA o

+ r Poc5bT'(u-h)dVo- r {c5TxD+~c5Tx(VuT.Vu)
Jvo Jvo

+[div(c5T+Vu'c5T)V'h}dVo = 0 (48)

and by means of formulae (A.6) in the Appendix and the divergence theorem we get

c5'¥* = r M~' (u-h) dA o+ r M~' (k-h) dA oJavo Jcv~

+ iV(,M~'(U-k)dAo+L, poc5b
T
'(U-h)dVo

- r c5T x (D-Vh-Vh T
• Vu+ !\luT'Vu) dVo = O. (49)Jvo

As variations Mo, c5boand c5T are totally arbitrary, c5'¥* vanishes if and only if

u=h onan

k=h onaV{

u=k onaH

k=h in Vo

(50)
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• I

Fig. I.

1919

Therefore the variational expression obtained gives the physical meaning ofthe Lagrang­
ian multiplier fields hand k, which can be identified with the displacement field u, and
returns the compatibility conditions (7) and the boundary kinematic conditions (46) as the
Euler equations of the problem.

It is thus clear that the relationship (42) gives origin to the set of conditions of
compatibility in the finite displacement theory of elasticity in the sense discussed in Section
2 and these conditions are as well embedded in the extended formulation ofCrotti's theorem.

5. A SIMPLE APPLICAnON

So far we have established the possibility of extending Crotti's theorem to the finite
displacement theory of elasticity. When this is possible, the main operational difficulty
remains, of course, in integrating expression (39).

We now consider what is perhaps the simplest case in the theory of structures in order
to illustrate the process in terms of generalised forces and displacements.

Let us examine the elastically hinged beam of Fig. 1. The Lagrangian parameter is
naturally the angle of rotation ¢ and we can restrict our attention to the s~t ¢ E [0, n/2[
without loss of generality. The generalised external actions are the applied vertical forces
Pi' the corresponding generalised displacements are the vertical displacements Ai and the
generalised internal force is the moment M acting on the rotational spring.

For the sake of simplicity, we consider the constitutive relationship be given by

M=k¢ (51)

where k is a constant.
In the geometrically linearized theory ofelasticity the complementary energy ofinternal

forces, whose derivative yields the classical Crotti's theorem, is given by

dUc(M) = d(M¢)-Md¢ = ¢dM = ~dM

and therefore, apart from a constant,

In fact, as in this framework we have as equilibrium equation

(52)

(53)
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M=PJi (54)

we get the following expression for the classical Croui's theorem

aUe aUe aM M
ap = aM ap = k Ii = ¢/, = il,

, I

(55)

which represents, as we consider sin ¢ ~ ¢, a compatibility condition.
Let us now move to the finite displacements theory of elasticity. In accordance with

the theory developed in the previous paragraphs, we have to express the complementary
work of external forces in terms of the internal force M.

Given the equilibrium equation

M= PJiCOS¢

we have, without any geometrical restriction,

dP.il = dPIsin¢ = ~M lsin¢ = dM tan ¢
" , I I

j
cos ¢ , .

(56)

(57)

By inversion of relationship (51) we can integrate the term dU~which is reduced to a
function of generalised internal force M.

Therefore, we get, apart from a constant,

(58)

With reference to expressions (58) and (53), it is evident that in the limit we have, according
to l'Hopital's rule,

lim M(¢) = 0 =>
1>~O

. U: k . In (sec ( ~))
hm- =~---- = I
1>~O Ue I M 2

2 k

(59)

as pointed out at the end of Section 3.
However, in the finite displacements theory of elasticity the derivatives of expression

(58) can provide the generalised displacements corresponding to the generalised forces Pi
in full generality:

au~ au~ aM d(k'ln(sec(~)))
- - ~ - - -----:---- = lsin¢ = ilaP

i
- aM ap, - dM ' I

Ij cos ¢

(60)

and therefore constitute the extension of expression (55) to the finite displacements theory
of elasticity in the spirit of classical Croui's theorem.

6. CONCLUSIONS

In the present paper the extension of Crotti's theorem to the finite displacement theory
of elasticity has been examined.
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Firstly, it has been shown how in a Lagrangian framework this result can be obtained
by the direct analysis of the expression corresponding to the complementary work ofapplied
forces in terms of internal stresses and strains, provided certain additional conditions are
satisfied with respect to the classical formulation of the theorem in the geometrically
linearized theory of elasticity. Secondly, it has been proved that the conditions of com­
patibility and the boundary kinematic conditions in the theory offinite elastic displacements
are implicitly embedded in the extended formulation of the theorem.

The result appears interesting from a theoretical point of view and clarifies some
questions which seem still unresolved in available literature. However, it is worth noting
that the non-linearity of the problem considerably complicates the matter and with regard
to practical cases it will be difficult to perform the required integrations in a closed form.
Nevertheless the procedure can suggest the possibility of deriving or imposing specific
conditions of compatibility in suitable cases and can provide a complementary approach
to some techniques which are based on strain energy.
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APPENDIX

We define the product A· B of two first or second-order tensors A and B in the following manner:

(A.I)

Given a second-order tensor A we call AT the transpose of A and we have

(A.2)

The inner product A x B of two second order tensors A and B is defined by
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(A.3)

If u is a vector field on a region 0 and is differentiable on 0 (i.e. at each point x EO), we call gradient of u at x
the following expression:

8u,(x)
Vu =-~ = ui.ix).

]

The divergence of a differentiable tensor field A on a region 0 is defined by

[div A(x)l, = Aij.j(x).

If u is a vector field and A is a tensor field, both of class C2 on 0, the following relationship holds true:

(A.4)

(A.5)

(A.6)


